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SUMMARY

Aclassof sequential procedures is developed forconstructing confidence
regions of pre-assigned width andcoverage probability for the parameter(s)
(scalar or vector-valued) of a population in the presence of nuisance
parameter. The proposed class is shown to be 'asymptotically efficient and
consistent' inChow-Robbins (1965) sense. By'means ofvarious examples,
it is shown that many estimation problems can be tackled by the proposed
class.
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7. Introduction and the Fixed-Sample SizeProcedure

Sequential procedures to construct confidence regions of pre-assigned
widthand coverageprobability for tlie paraineter(s) of various distributions have
been considered by many authors. For a brief review on-the literature, one
may refer to Govindarajulu [15], [16]. In the present note, exploiting the
common distributional proiierties of theestimators of thei)arameter(s) of interest
and those of nuisance parameters (which motivate one to adopt sequential
procedures) under different models, a class of sequential procedures is
developed. The proposed class is shown to be 'asymptotically efficient and
consistent' in Chow-Robbins [10] sense. The class and its |)roi)erties are
presented in Section 2. In Section 3, bymeans of various examples, we illustrate
tliat many estimation problems can be handled with tlie helj) of the proposed
class. The set-up of the problem can be described as follows:

Let us consider a sequence {X,}, i = 1,2, ... of iid rv's from a t-variate
(t> 1) absolutely continuous jioinilation f (x; 0,^i;)^ where 6 is a t x 1 vector
of unknown parameter(s) of interest and is a nuisance jjarameter. Denoting
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by R' and R"*", the t-dimensional Euclidean space and the positive-half of the
real line, respectively, let (0',\|;)' e R' xR+. Having recorded a random s^ple
(X,,..X„) of size n>t+1, let §,(X,,XJ = and \|f (X,,XJ =%be
the estimators of 0 andv, respectively. We make the following assumptions.

(fli); There exist aknown t x t positive definite matrix Q, a number 5 e (0,1]
and an integer r (> 1) such that

nv-'[(§„-0)'Q(6,-0)f~4)

where xl) denotes achi-square variate with r degrees offreedom.
For all n>t+1, and ij;,, are stochastically independent.

(03): There exist integers p (>1)and q (>1)such thatforn > q+ 1,

p(u - q) / IK = X witli Zf ~xl)
j=i

a. s.

(«4): ^ ^ "
For specified d e (0,oo) and a e (0,1), suppose one wishes to construct

a confidence region R_^ for 9 in R^ such that the width of R^ is bounded by
2d and P (0 e R^) > a. We define

R„ = [Z: {(§„ - Z)'Q (6„ - Z)}® < d'-] (1.1)

Denoting byF*'' (.), thecdfof a rvand utilizing (a,), weobtain from
(1.1),

P(0 ER„) = P[{(0„ - §)' Q(§„ - 0) <d']

= (uv"' d^)

Let a^ be the upper 100a% point of%(,, distribution, i.e.

F '̂̂ (a^) = a

Using monotonicity property of cdf, vve conclude from (1.2) and (1.3)
that for known Y, in order to achieve P (0 e R^) > a, the sample size required
is the smallest positive integer n>n^,

where n^ = (a/d)"\)f
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However, in the absence of any knowledge about no fixed sample size
procedure achieves tlie goals of fixed-size and i)re-assigned coverage probability
simultaneously for all values of To meet the requirements, we propose a
class J of sequential procedures, which is discussed in the following section.

2. The Class f ofSequential Proceduresand its Properties

Let us start with a sample of size m > max {t+ 1, q + 1}. Then, motivated
by (1.4), tlie stopping time N = N (d) is the smallest positive integer
u>m such that

n>(a/dfAl;„ (2.1)

After stopping, we constnict the region

Rn = [Z: <(§N - Z)' Q(§N - Z)>® ^f'l for 0
Now we prove the following tlieorem, which establishes the results that

tlie class J of sequential procedures defined above is 'asymptotically efficient
and consistent' in Chow-Robbins [10] sense. In what follows, we denote by
V„ = p(n-q)v„/v.

Theorem: N is well-defined stojiping nile. (2.2)

limN = ooa.s. (2.3)
d ^ o

lim (N / n^) = 1 a.s. (2.4)
d -> o

E (N) < n^+ m - 1 (2.5)

lim E (N / n„) = 1 (2.6)
d —>o

lim P (0 e Rf^) = a (2.7)
d —>o

We omit the proof which follows using standard techniques.

3. Estimation Problems having Solutions Provided by the Class 'J

3.1 Estimation of the Mean Vectorof a MultinomialPopulation

Let {X,}, i = 1, 2, ... be a sequence of iid rv's from a p-variate nomial

population Np (x: p., S), where is the p x 1 unknown mean vector,

e (0,oo) is au unknown scalar and E is a known p x p positive definite matrix.
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Suppose, one wishes to construct an ellipsoidal confidence region for
such that the width is bounded by 2dand P (|ii e R„) >a. Having recorded

X,,...,X„,n > p+1, we use =
' " - i=I

n

a^= [pOi-Df^X^'^i-as estimators of ^lauda^
i = l

respectively. Thus, t = p, 6 = H, V = ~ ~ ^n-

[see, Wang [32] ] that (aj)-(a4) are satisfied for r = p, s = 1. We construct

Rn = [(Xn - Z)' 5^"' (Xn - Z) ^ d^l for |i

For sequential procedures to constnict fixed-size confidence regions for
the mean vectorof a multinonnal population, one may refer to Srivastava [23],
Srivastava and Bhargava ([26], [28]), Jones [18] and Singh and Chaturvedi [21].

3.2 Estimation of tlieRegression Parameters in a LinearModel

Let us consider the linear model (i+ is an observed

nX1 random vector, X„ is a nx p matrix of rank p, p is a |)x 1 vector of
unknown parameters and is the disturbance term following N^(0,o^I„)
distribution. We have to construct an ellipsoidal confidence region R^ for

p such that the width ofR„ is bounded by 2d and P (p e R„) > a. The ordinary
least-squares estimator of p is p„ = (X/X„)"' X„' Y„ and we use
a; = (n-p)-'Y;[I„-X„(X;X„)-'x;]Y„ to estimate o\ Thus, t - p,
0 = p, -vif a^, §„ = P„ and = o^. It is easy to verify [see, Chaturvedi,
[7]] that (aj)-(a4) hold for p = 1, r = q = p. We construct

Rn = [(Pn - Z)' (Xn' Xn) (Pn - Z) <d'] for p
Sequential procedures to constnict fixed-size confidence regions for

regression parameters in a linear model have been developed and studied by
Wijsman [33], Gleser ([13], [14]), Srivastava ([23], [24]) and Chaturvedi [8].

3.3 Comparisons of a Control Against Several Treatments

Let us consider tlie problem of obtaining simultaneous confidence intervals
for the differences 8; = i = 1,2,..., k, where and are, resi)ectively,
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the means of the control treatment and the i"" treatment. Let us denote by {Xy},
j = 1, 2, . . tlie j"' observation on the i*^ treatment. From these observations,
we can constnict vectors X,, X^,... where

Xj' = (Xqj. - Xjj., Xgj - Xjj,...,Xqj. - X^p.. These vectors are iid nomial random
variables with mean vector |,i' = (5p ..., 5,^) and the covariance matrix

a^V, where = Var(Xpj-X|P is unknown and

1 1/2 .. . 1/2

V =
1/2 , 1 .. . 1/2

1/2 1/2 .. 1

We have to constnict a confidence interval R of width 2d. for 8., such that
n . I r

P(8j e R^) > a. Having observed a random sample X.,, of size n>2,

for Xi(„) = n-'XXij.
i=i

we use = and

= [k(u -l)r'X(Xj-Xj)'V~'(x.-xp as the estimators of 8; and a^
j=i ^ ^ /

respectively. Thus, t = 1, 0 = 8., \)r = a", 8,^^) and = S^. It can be
verified that (a,)-(a4) hold for 8 = Q = = l,r = p = k and q = 1. We
constnict R,^ = ± dj] for 8j.

Fixed sample size and sequential i)rocedures for this estimation ijroblem
have been proposed and studied by Dunnett [11] and Jones [18], resiKctively.

3.4 Estimation of the Mean of Inverse Gaussian Distribution with Prescribed

Proportional Closeness

Let <X;}, r = 1, 2,... be a sequence of iid rv's from an inverse Gaussian

population

vl/2

f (x; k) = ( ^
exp

A. (x - u)^

2^l^x
; X> 0

where both the parameters |li e (0, «>) and X e (0, <») are unknown. Having
observed a random sample of X,,..., X^ of size n (> 2), let us define

X^ = n ' X. and - (n -1) ' ^ (X.' - X^ ) as the estimators of |Li and
i= 1 i= 1
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X,"', respectively. Consider the loss in estimating by to be a zero-one
loss function given by

L(^,X„) =
IXn-nl

vx;
0, otherwise
'•'f

Our target is to achieve E[L(n, X^)] < a. Tluis, t = 1, 0 = \|f = X.
= X_j and It can be verified [see Chaturvedi [5]] that (aj)-(a4)

are satisfied for 5 = r = p = q = 1 and Q = (iirX^^)"' = (m-'X^)"'.

Sequential procedures for this estimation problem been developed and
studied by Chaturvedi [5], [6], For some related work, one may also refer to
Singh and Chaturvedi [22],

3.5 Estimation Problems Related to Multiple Comparison Procedures

We now consider estimation problems which take place in multiple
comparison procedures. For a detailed discussion on this topic, one may refer
to Hochberg and Tamliane [17]. We take the linear model same as that defined
in Section 3.2. In many problems of multiple comparisons, o"e may be interested
in estimating the parametric functions of the comijoneiits of a
k X1 (1 < k < p) subvector 0 of (5. Here 0 may be the effects of a certain
qualitative factor (or a combination of two or more qualitative factors), which
may be referred to as the treatment factor and these k(>2) levels as the
treatments of main interest. It may also contain the effects of factors such as
blocks and covariates, included to account for the variability among the
experimental (or the observational) units and thus yield more precise
comparisons among the treaUiient effects.

I A ^
Let 0^ be the corresponding subvectorof and V be tlie k x k submatrix

of (X'̂ X^)~' corresponding to the part of (5^. Let L= (I,,..y be aknown
matrix. Consider a set of i)arametric functions yj = I'j 0 "^nd write

y = (I'j 0,..., I'p 0)'. Let 7^ = L be the least-squares estimator ofy. In order
to estimate we use S' = v~'llY-Y iP, where Y = X B . and

n n ' n n ' n

V = n - Sq is tlie enor degrees of freedom and Sg = rank (X^). Our goal is to
construct an ellipsoidal confidence region for y of diameter bounded by

2d and confidence coefficient atleast a. It can be verified that (a,)-(ap hold

for Q = n"' (LVL')~', 8 = 1, r = p and q = s^,. We propose the region
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Rn = [Z: (Yn - Z)' (LVLT' (Tn - Z) ^ d'l for y

3.6 Estimation of tlie Mean of Intra-class Model

Let us consider the intra-class model Xj = |u+ Ej, i = 1, 2, . . n, where

Ej's are nonnally distributed witli E(ej) = 0 and

Cov (8;, 8j) = < if i = j

pa^ if i j; i,j= 1,2, ...,n

The parameters |li e (-oo, oo), o e (0, <») and p e (-1,0) are unknown. We
have to construct a confidence interval of width 2d and coverage probability

n n

at least a for |ii. We use = n~' ^ X; and = (n - 1)"' ^ (Xj - X^)" as
i=l i=l

the estimators of ^ and a^(l-p), respectively. Thus, t = 1, 6
= o^(l - p), and Vp = S^. We note tliat (a,) - (a^) are satisfied

for 5 = r = p = q = Ij ^ j = 1. We construct the interval = [Xj^ ± d] for

3.7 Estimation of the Scale Parameter of Pareto Distribution

Let us consider a sequence {X;}, i = 1, 2, ... of iid rv's from tlie first
kind of Pareto distribution

f(x; 0,a) = a"' x > 0 > 0, a > 0

Both, the scale parameter 0 and the shape parameter a are unknown and we
have to constnict a confidence interval R^^ of width bounded by 2d for In 0

such tliat P (In 0 e R^^) > a. Having recorded a random sample Xj, •• •, X^ of
size n(>2), for X^^j^ = min (X,,..., X^), we use = In X^^j^ and

n

= (n-1)"'^ In (X|/Xj^^jP as the estimators of In 0 and a, resiKCtively.
i= 1

Thus, 0 = ln0, \i; = a, 0^ = u^(,j and = o^. We note that (a,)-(aj are
satisfied for 5 = 1 /2, Q = = 1, r = p = 2 and q = 1. We propose the

interval R^ = [Uj^(,j±d] for In 0.

For sequential procedure to estimate the scale parameter of Pareto
distribution, one may refer to Wang [31],
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3.8 Estimation of the Location Parameter of Exponential Distribution

Let {Xj}, i = 1, 2, ... be a sequence of iicl rv's from negative exponential
distribution

f (x; a) = a"' exp [- (x- m.) / a] I(x > ^i)

where |i e (-00,00) and a e (0,00) are the unknown parameters. Suppose, we
have to constnict a confidence interval of width bounded by 2d for |ii, such

that P(^eR^)>a. Having observed X,,...,X^, u> 2, we use
n

X^^jj = min (Xj,..X^), and = (n - 1)"' ^ In (X, - as the estimators
i=l

of jtand a, respectively. Here t = 1, 6 = |ii, V = a, 0^ = X^^,^ and
= a^. It is easy to see that (a|)-(a^) are satisfied for 5 = 1/2,

Q = I,^i = l, r = p = 2 and q = 1. We propose the interval

Sequential procedures to construct fixed-width confidence interval for the
location parameter of a negative exponential distribution have been develoi)ed
and studied by Basu [4], Swanepoel and van Wyk [30] and Chaturvedi and
Shukla [9].
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